用蟻群算法求解最小極大流問(wèn)題.pdf_第1頁(yè)
已閱讀1頁(yè),還剩64頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、網(wǎng)絡(luò)流問(wèn)題是近幾十年來(lái)運(yùn)籌學(xué)、網(wǎng)絡(luò)分析等學(xué)科研究的熱點(diǎn)問(wèn)題。1997年, Shi-Yamamoto提出了最小極大流問(wèn)題,現(xiàn)已有的算法均是通過(guò)理論證明在多維空間中得到網(wǎng)絡(luò)的最小極大流,卻沒(méi)有基于蟻群算法研究最小極大流問(wèn)題。因此,鑒于該問(wèn)題的網(wǎng)絡(luò)特性和蟻群算法求解網(wǎng)絡(luò)問(wèn)題的優(yōu)越性,針對(duì)最小極大流問(wèn)題,可以采用以蟻群算法為基礎(chǔ)進(jìn)行算法設(shè)計(jì)從而求解最小極大流問(wèn)題。
  首先,對(duì)最小極大流問(wèn)題進(jìn)行了理論分析,提出結(jié)合蟻群算法求解問(wèn)題的思想,

2、設(shè)計(jì)程序求解最小極大流問(wèn)題。接著,通過(guò)定理證明可知,最小極大流問(wèn)題可轉(zhuǎn)換為一個(gè)線性優(yōu)化問(wèn)題,構(gòu)造了適于蟻群算法的模型,運(yùn)用蟻群算法尋找該線性優(yōu)化方程的價(jià)值向量,并運(yùn)用MATLAB求解線性方程最優(yōu)解,該最優(yōu)解即為網(wǎng)絡(luò)的一個(gè)極大流,繼而得到最小極大流。
  文章對(duì)一個(gè)復(fù)雜的交通模擬圖利用MATLAB編程求解最小極大流問(wèn)題。數(shù)值實(shí)驗(yàn)表明,基于蟻群算法的方法在最小極大流問(wèn)題上得到了較好的結(jié)果,分析的結(jié)果驗(yàn)證了該算法的可行性。通過(guò)數(shù)值實(shí)驗(yàn)得

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論